Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels
نویسندگان
چکیده
Members of the classic type of transient receptor potential channels (TRPC) represent important molecules involved in hormonal signal transduction. TRPC3/6/7 channels are of particular interest as they are components of phospholipase C driven signalling pathways. Upon receptor-activation, G-protein-mediated stimulation of phospholipase C results in breakdown of phosphatidylinositides leading to increased intracellular diacylglycerol and inositol-trisphosphate levels. Diacylglycerol activates protein kinase C, but more interestingly diacylglycerol directly activates TRPC2/3/6/7 channels. Molecular cloning, expression and characterization of TRP channels enabled reassignment of traditional inhibitors of receptor-dependent calcium entry such as SKF-96365 and 2-APB as blockers of TRPC3/6/7 and several members of non-classic TRP channels. Furthermore, several enzyme inhibitors have also been identified as TRP channel blockers, such as ACA, a phospholipase A(2) inhibitor, and W-7, a calmodulin antagonist. Finally, the naturally occurring secondary plant compound hyperforin has been identified as TRPC6-selective drug, providing an exciting proof of concept that it is possible to generate TRPC-selective channel modulators. The description of Pyr3 as the first TRPC3-selective inhibitor shows that not only nature but also man is able to generate TRP-selective modulators. The review summarizes the data on pharmacological modification of TRPC3/6/7. Sheds lights on the current knowledge and historical development of pharmacological modulators of TRPC3/6/7. Our analysis indicates that Pyr3 and hyperforin provide promising core structures for the development of new, skeletive and more potent modulators of TRPC3/6/7 activity.
منابع مشابه
Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels.
Members of the canonical transient receptor potential (TRPC) subfamily of cation channels are candidates for capacitative and non-capacitative Ca2+ entry channels. When ectopically expressed in cell lines, TRPC3 can be activated by phospholipase C-mediated generation of diacylglycerol or by addition of synthetic diacylglycerols, independently of Ca2+ store depletion. Apart from this mode of reg...
متن کاملA functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2.
The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently desc...
متن کاملFormation of novel TRPC channels by complex subunit interactions in embryonic brain.
Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely und...
متن کاملDissociation of Regulated Trafficking of TRPC3 Channels to the Plasma Membrane from Their Activation
Regulated translocation of canonical transient receptor potential (TRPC) proteins to the plasma membrane has been proposed as a mechanism of their activation. By using total internal reflection fluorescence microscopy (TIRFM), we monitored green fluorescent protein-labeled TRPC3 (TRPC3-GFP) movement to the plasma membrane in HEK293 cells stably expressing this fusion protein. We observed no inc...
متن کاملInhibition of Diacylglycerol–Sensitive TRPC Channels by Synthetic and Natural Steroids
TRPC channels are a family of nonselective cation channels that regulate ion homeostasis and intracellular Ca(2+) signaling in numerous cell types. Important physiological functions such as vasoregulation, neuronal growth, and pheromone recognition have been assigned to this class of ion channels. Despite their physiological relevance, few selective pharmacological tools are available to study ...
متن کامل